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Study of Local Limit Theorems, with their speed of convergence.

Less studied than Central Limit Theorems,

even in the simplest probabilistic framework.

Here: focus on the case of the output of the Euclid Algorithm.

I – The Euclid Algorithm

II- Distributional results which are already known

Central Limit theorems

Local limit theorems in the particular case of a lattice cost.

III – Local limit theorems for a non-lattice cost

The easier case of memoryless processes

IV – Local limit theorems in the case of a dynamical system

Discrete trajectories versus continuous trajectories.

Return to the Euclid algorithm.
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The (standard) Euclid Algorithm

On the input (u, v), it computes the gcd of u and v,

together with the Continued Fraction Expansion of u/v.

u0 := v; u1 := u;u0 ≥ u1

u0 = m1u1 + u2 0 < u2 < u1

u1 = m2u2 + u3 0 < u3 < u2

. . . = . . . +

up−2 = mp−1up−1 + up 0 < up < up−1

up−1 = mpup + 0 up+1 = 0


up is the gcd of u and v, the mi’s are the digits. p is the depth.

CFE of
u

v
:

u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

,
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Three main outputs for the Euclid Algorithm

– the gcd(u, v) itself

Essential in exact rational computations,

for keeping rational numbers under their irreducible forms

60% of the computation time in some symbolic computations

– the modular inverse u−1 mod v, when gcd(u, v) = 1.

Extensively used in cryptography

– the Continued Fraction Expansion CFE (u/v)

Often used directly in computation over rationals.

The main object of interest here.

A basic algorithm ... Perhaps the fifth main operation?
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The main costs of interest for the continued fraction expansion

With some “digit-cost” d defined on digits mi, one defines:

D̂(u, v) :=

p∑
i=1

d(mi)

Main instances:

if d = 1, then D̂ := the number of iterations

if d = 1m0 , then D̂ := the number of digits equal to m0

if d = ` (the binary length), then D̂ := the length of the CFE

The natural costs d take integer values.

However, it is also interesting to study general digit costs,

They give rise to various observables on the Continued Fraction expansion

For instance d(m) = logm, .... related to the Khinchine constant.



The main costs of interest for the continued fraction expansion

With some “digit-cost” d defined on digits mi, one defines:

D̂(u, v) :=

p∑
i=1

d(mi)

Main instances:

if d = 1, then D̂ := the number of iterations

if d = 1m0 , then D̂ := the number of digits equal to m0

if d = ` (the binary length), then D̂ := the length of the CFE

The natural costs d take integer values.

However, it is also interesting to study general digit costs,

They give rise to various observables on the Continued Fraction expansion

For instance d(m) = logm, .... related to the Khinchine constant.



The main costs of interest for the continued fraction expansion

With some “digit-cost” d defined on digits mi, one defines:

D̂(u, v) :=

p∑
i=1

d(mi)

Main instances:

if d = 1, then D̂ := the number of iterations

if d = 1m0 , then D̂ := the number of digits equal to m0

if d = ` (the binary length), then D̂ := the length of the CFE

The natural costs d take integer values.

However, it is also interesting to study general digit costs,

They give rise to various observables on the Continued Fraction expansion

For instance d(m) = logm, .... related to the Khinchine constant.



Main probabilistic questions on the Continued Fraction Expansion

... and its “total” cost D̂

Number of iterations D̂

of the Euclid Algorithm

d = 1

Analyse in particular, the distribution of D:

For instance:

A gaussian law for the number of steps?

Existence of a Central Limit Theorem?

Existence of a Local Limit Theorem?

Which speed of convergence?
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The underlying dynamical system (I).

The trace of the execution of the Euclid Algorithm on (u1, u0) is:

(u1, u0)→ (u2, u1)→ (u3, u2)→ . . .→ (up−1, up)→ (up+1, up) = (0, up)

Replace the integer pair (ui, ui−1) by the rational xi :=
ui
ui−1

.

The division ui−1 = miui + ui+1 is then written as

xi+1 =
1

xi
−
⌊

1

xi

⌋
or xi+1 = T (xi), where

T : [0, 1] −→ [0, 1], T (x) :=
1

x
−
⌊

1

x

⌋
for x 6= 0, T (0) = 0

An execution of the Euclidean Algorithm (x, T (x), T 2(x), . . . , 0)

= A rational trajectory of the Dynamical System ([0, 1], T )

= a trajectory that reaches 0.

The dynamical system is a continuous extension of the algorithm.
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T (x) :=
1

x
−
⌊
1

x

⌋

T[m] :]
1

m+ 1
,
1

m
[−→]0, 1[,

T[m](x) :=
1

x
−m

h[m] :]0, 1[−→]
1

m+ 1
,
1

m
[

h[m](x) :=
1

m+ x

u

v
=

1

m1 +
1

m2 +
1

. . . +
1

mp

= h[m1] ◦ h[m2] ◦ . . . ◦ h[mp](0)



The discrete algorithm is extended into a continuous process.

Two types of weighted trajectories and two probabilistic models:

First model : Study of truncated real trajectories “at depth n”

For a random x ∈ I Dn(x) :=

n∑
i=1

d(mi(x))

Second model: Study of rational trajectories “of denominator N”

on ΩN := {x = u/v ∈ I, v = N}

For a random x ∈ ΩN D̂N (x) :=

P (x)∑
i=1

d(mi(x)),

We wish to compare these two “observables” .

Since the discrete data are of zero measure amongst the continuous data,

we need a “transfer from continuous to discrete”.

A main tool in both probabilistic models: The transfer operator.
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The transfer operator

H := the set of

the inverse branches

of T .

T (x) :=
1

x
−
⌊
1

x

⌋

Density Transformer:

For a density f on [0, 1], H[f ] is the density on [0, 1] after

one iteration of the shift

H[f ](x) =
∑
h∈H

|h′(x)| f ◦ h(x) =
∑
m∈N

1

(m+ x)2
f(

1

m+ x
).

Weighted transfer operator relative to a digit-cost d

Hs,w[f ](x) =
∑
h∈H

|h′(x)|s ewd(h) f ◦ h(x).

The k-th iterate satisfies, with d extended in an additive way

Hk
s,w[f ](x) =

∑
h∈Hk

|h′(x)|s ewd(h)f ◦ h(x)
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II- Distributional results for weighted trajectories



Transfer operator and distributional study of weighted trajectories

In distributional studies, the main tools are the characteristic functions

E[exp(wDn)], EN [exp(wD̂)]

Real case: E[exp(wDn)] =

∫
I
Hn

1,w[1](t)dt

Rational case : EN [exp(wD̂)] related to [N−s](I −Hs,w)−1[1](0)

due to the relation between

Dirichlet generating functions and quasi-inverses of the transfer operator,

Sd(s, w) :=
∑

(u,v)∈Ω

1

v2s
exp[wD̂(u, v)] = (I −Hs,w)−1[1](0)
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Distributional results for the continued fraction expansion

Already known results [Baladi-V (2003)]

In both cases, Real trajectories or Rational trajectories,

For a cost d of moderate growth d(m) = O(logm),

(a) Central Limit Theorems hold for Dn, D̂N

(b) Moreover, for a lattice cost, Local Limit Theorems hold for Dn, D̂N

∃d0, L ∈ R, with L > 0, such that ∀m d(m)− d0

L
∈ Z

(c) With optimal speed of convergence

O

(
1√
n

)
, O

(
1√

logN

)



Distributional results for the continued fraction expansion

They deal with the characteristic functions E[exp(wDn)],EN [exp(wD̂)]

and thus with the transfer operator Hs,w

Different cases of study for parameters s and w

For parameter s

– Real trajectories: s = 1

– Rational trajectories s = 1 + it, with t ∈ R

For parameter w:

– Central Limit Theorems:

w ∼ 0

– Local Limit Theorems for a lattice cost :

w = iτ with τ ∈ K compact ⊂ R
– Local Limit Theorems for a non lattice cost :

w = iτ with τ ∈ R
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Properties of the dynamical system and cost needed in distributional studies

for dealing with the operator H1+it,iτ in each each domain (t, τ).



III- Local limit theorems with speed of convergence in simpler cases

Memoryless case.



Let (Xi) be a i.i.d sequence with values in N, and pm := Pr[Xi = m].

A cost d : N→ R+, Some technical conditions:

σ0 := inf{σ;

∞∑
i=1

pσm <∞} < 1, d(m) = O(| log pm|)

The mean µ[d] and the standard deviation σ[d] exist. We assume σ[d] 6= 0.

Main subject of interest: Dn :=
n∑
i=1

d(Xi) (n→∞).

There is a Central Limit Theorem (CLT) for Dn

with a speed of convergence of order O(1/
√
n),

Pr

[
Dn − nµ[d]

σ[d]
√
n
≤ y
]
− 1√

2π

∫ y

−∞
e−t

2/2dt = O

(
1√
n

)
.
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The mean µ[d] and the standard deviation σ[d] exist. We assume σ[d] 6= 0.

Main subject of interest: Dn :=

n∑
i=1

d(Xi) (n→∞).

There is a Central Limit Theorem (CLT) for Dn

with a speed of convergence of order O(1/
√
n),

Pr

[
Dn − nµ[d]

σ[d]
√
n
≤ y
]
− 1√

2π

∫ y

−∞
e−t

2/2dt = O

(
1√
n

)
.



A Local Limit Theorem (LLT)

– deals with Q(x, n) := µ[d]n+ δ[d]x
√
n,

– evaluates the probability that Dn−Q(x, n) belongs to some J ⊂ R,

– compares it to (|J |/
√

2πn) e−x
2/2.

A Local Limit Theorem (LLT) proves that

√
n Pr[Dn −Q(x, n) ∈ J ]− |J | e

−x2/2

δ(d)
√

2π
→ 0 (n→∞).

What about the speed of convergence?

It depends on arithmetical properties of cost d. Two main cases:

the lattice case, and the non–lattice case.

A cost d is lattice if

∃d0, L ∈ R, with L > 0, such that ∀m d(m)− d0

L
∈ Z

The smallest possible L > 0 is called the span of the lattice cost.

If d0 = 0, the cost is called “plain lattice”.
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In the lattice case, the optimal speed, of order O(1/
√
n) is attained.

More precisely, for a plain lattice cost of span 1, one has

√
nPr[Dn = P (x, n)] =

√
2π
e−x

2/2

δ(d)
+O

(
1√
n

)
P (x, n) := bQ(x, n)c.

In this case, the characteristic function φ is periodic

φ(τ) :=

∫
R

exp[iτx] dPd(x) =
∑
m≥1

pm exp[iτd(m)],

In the non–lattice case, the speed in the LLT depends

– on the behaviour of the characteristic function φ of cost d, when τ →∞
– on arithmetic properties of cost d

which measures the ”difference” between the cost d and a lattice cost.

Important fact: There is a relation between these two properties.
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Proposition (classical and easy). The conditions are equivalent :

(i) The cost d is lattice

(ii) There exists τ0 6= 0 for which φd satisfies |φd(τ0)| = 1.

Moreover, Condition (ii) entails Condition (iii)

(iii) For any h, k, ` ∈ N, the ratio
d(h)− d(k)

d(h)− d(`)
is rational.

Reinforcements of negations of Conditions (ii) or (iii).

A cost d is of characteristic exponent χ if

∃K, τ0 > 0, |φd(τ)| ≤ 1− K

|τ |χ
for |τ | ≥ τ0.

A cost d is of diophantine exponent µ if

∃(h, k, `) ∈ N3, such that the ratio
d(h)− d(k)

d(h)− d(`)
is Diop (µ)

A number x is diophantine of exponent µ if

∃C > 0, ∀(p, q) ∈ N2, one has:

∣∣∣∣x− p

q

∣∣∣∣ > C

q2+µ



First result (Breuillard)

The cost d is of characteristic exponent χ

=⇒ a Local Limit Theorem for Dn with speed n1/χ

For any ε with ε < 1/χ, for any compact interval J ⊂ R,

there exists MJ , so that ∀x ∈ R,∀n ≥ 1, one has:∣∣∣∣∣√n Pr[Dn(u)−Q(x, n) ∈ J ]− |J | e
−x2/2

δ(d)
√

2π

∣∣∣∣∣ ≤ MJ

nε

Second result (Breuillard)

The cost d is of diophantine exponent µ,

=⇒ d of characteristic exponent χ for any χ > 2(µ+ 1).

Conclusion:

The cost d is of diophantine exponent µ,

=⇒ a Local Limit Theorem for Dn with speed n1/2(µ+1).



IV- Local limit theorems with speed of convergence

Trajectories of dynamical systems.



And now if the Xi are generated by a dynamical system?

For instance the digits of the continued fraction expansion

(they are no longer independent)

Case of real trajectories

Definition: d is of characteristic exponent χ (wrt to the DS), if,

||Hn(τ)
1,iτ || ≤ 1− 1

|τ |χ
, for any τ with |τ | ≥ τ0 n(τ) := Θ(log |τ ]).

Two properties:

The cost d is of characteristic exponent χ wrt to the DS

=⇒ a Local Limit Theorem for Dn with speed n1/χ

The cost d is of diophantine exponent µ,

=⇒ d of characteristic exponent χ for any χ with χ > K(µ+ 1).

K depends on the DS.

A good generalization of the memoryless case.



Case of rational trajectories.

Definition: d is of uniform characteristic exponent χ

||Hn(τ)
1+it,iτ || ≤ 1− 1

|τ |χ
, for any (t, τ) with |t| ≤ a and |τ | ≥ τ0.

NOW: (Baladi-Hachemi)

The cost d is of uniform characteristic exponent χ

=⇒ a Local Limit Theorem for D̂N with speed (logN)1/χ

HOWEVER (Baladi-Hachemi)

The property : “The cost d is of diophantine exponent µ”,

is A PRIORI NOT sufficient to entail

“d is of uniform characteristic exponent χ for any χ with χ > K(µ+1)”.

Baladi and Hachemi proposed an intertwined diophantine condition

involving the branches of the dynamical system AND the cost d
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Our result:

A set of two conditions NOT intertwined

– The diophantine condition (D) on the cost d

– A (new) condition (C) on the branches of the DS

a ”diophantine” version of the aperiodicity condition on the DS.

The Aperiodicity Condition says :

“The branches of the system do not have all the same shape”.

If h? is the fixed point of branch h,

This implies that the cost c(h) := log |h′(h?)| is strongly non additive,

and then very often Γ(h, k) := c(h ◦ k)− c(h)− c(k) 6= 0

Our condition (C). There exist three branches h, k, ` for which

Γ(h, k) 6= 0, Γ(h, `) 6= 0, and
Γ(h, k)

Γ(h, `)
is diophantine.
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Properties of the dynamical system and cost needed in distributional studies

for dealing with the operator H1+it,iτ in each each domain (t, τ).



Return to the Euclid dynamical system.

In this case, the condition (C) is always satisfied.

Let c(h) := log |h′(h?)|. There exist three branches h, k, ` for which

Γ(h, k) 6= 0, Γ(h, `) 6= 0, and
Γ(h, k)

Γ(h, `)
is diophantine.

Why?

– The fixed point h? of h and |h′(h?)| are algebraic numbers.

– Then Γ(h, k) equals the logarithm of an algebraic number α(h, k)

– There exist h, k, ` such that

α(h, k) and α(h, `) be algebraically independent.

– Baker’s theorem proves that the ratio Γ(h, k)/Γ(h, `) is diophantine.
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The final result,

for the total costs of a continued fraction relative to some cost d.

D̂N (x) :=

P (x)∑
i=1

d(mi(x)) on ΩN := {x = p/q; q ≤ N}

Dn(x) :=

n∑
i=1

d(mi(x)) on I

If the non lattice cost d is

– of moderate growth [d(m) = O(logm)]

– of diophantine exponent (µ, θ),

there is a Local Limit Theorem for costs D̂N , Dn

with a speed of convergence O

(
1

logεN

)
or O

(
1

nε

)

with ε >
1

2(µ+ 1)(2 + θ/θ0)
.
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